网易云音乐用户体验分析报告
最近陆续看到了很多有关“网易云音乐”的分析。文章多侧重于产品结构、功能模块、交互细节、视觉表现等维度阐释网易云音乐怎么怎么好,怎么优于其他竞品。本着对该产品的热爱和“第一原理思维”的认同,我希望能够从自身的一些真实感受来谈谈我对网易云音乐看法。
有关产品分析对象选择的那点事
首先在“关于无线C端产品的一些UX建议”中我曾经举过Eric对PC与移动端的实验研究成果:“情感反应(Emotional Response)将会提升PC产品的参与度是,而对于移动产品影响不大。”而当下我看到的众多有关网易云音乐的分析均是基于移动平台,并且去讨论它做的有多么Emotional!我不知道这份Emotional是怎么感知的。通过用户的访谈,我们了解绝大多数的用户是在稳定的场景下,由于其强大的推荐算法匹配到了他们喜爱的歌曲类型,紧接着看到了基于点赞数的热门神评论,由此产生了情感闭环,即爱上PC端的网易云音乐,然后再基于这份情感闭环(良好的口碑)去附带移动端。因此去讨论网易云音乐移动端多牛逼,是典型的“头痒挠脚”。
其次只去讨论它的结构设计多么好、功能模块规划的多么人性抑或交互细节、视觉表现做的多么细腻,也是一种赵括式的纸上谈兵,最终不仅害了身边卖命的将军,还误了整个赵国!我们都知道辣条很好吃,即感知层面和行为层面的质量都很棒,但是我们看过新闻对它制造黑幕工艺的曝光,我们最终对它的综合评价依然是消极的。这件事告诉我们脱离用户真实情感去讨论所谓的产品结构、功能模块、交互细节、视觉表现去评价一个产品是没有任何意义的,是一种不落地的产品分析,即我经常讲的“你的情怀我不懂!”
Law在2009年就提出产品使用层面只是用户满意的“保健因素”,对应于KANO模型中的基本型需求,遵循质量-满意度的反比例曲线分布,随着该层质量的提升,满意度会趋于某一固定值,即围绕产品设计本身的一些匠心规划,并不意味着让你做一个自嗨的匠人!否则就会出现我们不能理解的“伪情怀”。苹果公司从来不吹嘘自己的工业设计多牛逼,多有情怀,但我们能感受到。好了,又扯多了,我们回归网易云音乐这件事上,我们本着学术与实际的共同现象,选择PC端的网易云音乐作为分析对象,并以“用户真实情感”贯穿整个分析过程。
一、用户对网易云音乐的情感认知
“牛逼”、“精品”、“看歌神器”,以上是有关网易云音乐最多的主观描述。我们随机访谈了12位的网易云音乐的用户,发现用户情感发生的共同场景与Eric的研究成果不谋而合:在稳定的场景中(PC平台)盲听到喜欢的歌曲,紧接着探索了一下该歌,发现了为之惊喜的神评论,对歌曲本身形成画面感(共鸣感),相比于“dong ci ka ci” 有故事的歌更能引起人反应,而评论就扮演着“故事”的角色。网易音乐本身也在培养我们这批用户:听歌必须看评论的的行为,我相信习惯了网易云音乐的用户很难再转酷狗、QQ音乐之类的平台,因为他们断了我们听歌看评论的行为,这种截断是我们无法适应的。
二、由范围层、结构层、框架层和表现层到战略层闭环
2.1范围层——细致的场景定位与用户行为的挖掘
相比于其他音乐平台,网易云音乐在范围层方面独有的功能内容有:歌曲评论、社交、歌单创建灵活性和盲听(强大的智能推荐算法)四个模块。通过身边用户访谈反馈,我们发现用户印象深刻的是“评论”、“盲听”以及“灵活的歌单创建”,因此范围层不对“社交”进行分析,只侧重于“评论”、“盲听”和“灵活的歌单创建”。
1、评论-音乐下游体验的载体
音乐本身是一个带有积极情感的事物,因此评论功能不能说是一大亮点,只是顺应积极情感的一个收尾之笔。即我们听到一首不错的歌,自然想去进一步了解它,那么了解它什么?歌名?歌词?抑或炫酷的大转盘?如果你还有点“同理心”,你就会意识到以上那些歌名、歌词、大转盘只需2-3秒就可以扫描完毕,之后只剩下尴尬,就像和阔别已久的同学相聚,两三分钟内把所有能讲的话都讲完了,剩下的除了尴尬,还是尴尬!即我对这这首歌印象还不错,但是就是找不到一个可以满足我下游体验的载体,而评论正好充当了这一角色。具体到听歌行为上,则表现为:对这首歌还不错–哇,哈哈哈哈(已阅热门评论)–情感共鸣,用户在价值感受方面的自我满足度、愉悦度、有用度和移情方面得到了强化与提升。
2、盲听
- 私人FM&每日歌曲推荐
在12位访谈用户中,我们发现他们另外一个共性就是“盲听”,在稳定的场景下,听歌仅是我们的一个碎片化任务,即我们可能在写代码、在整理需求文档抑或在画线框图,这些主要任务使得我们没有太多精力去Care一些歌曲的选择,我对它的诉求只有一个“好听就行”。正因如此,我们看到WIN10版的网易云音乐强化了“私人FM”与“每日歌曲推荐”。
- 基于用户行为的歌曲基因推荐算法
这个有点类似于Amazon发明的Collaborative filtering(商品推荐算法)。我们以三首歌曲为例,将这三首歌曲分别类比于空间坐标系的XYZ轴,以用户对歌曲喜好程度为量化基础(比如歌曲循环——5分、分享——4分、收藏——3分、播放——2分、听完——1分、切过——-1、删除——-5)。那么用户A的空间向量值为(4,3,1),用户B的空间向量值为(5,2,-1)。通过计算向量夹角的余弦值可以判断这两个用户的一致性,即两人一致,向量的夹角为0,余弦值为1。基于用户行为数据的歌曲分类与匹配是盲听中最最核心的功能,也是“评论”的重要前置条件,因此它的重要性对于网易云音乐来说,是不言而喻的。
3.灵活的歌单创建——产品动力源:产品有用不代表用户对你产品的忠诚
有用的功能=用户忠诚吗?不一定,就拿移动医疗中的挂号、问诊来说,它们的确是有用的功能,但只有我生病时我才可能会去用,事件本身是个低频的事件,即功能虽然有用,但是却是个低频需求(人物低频&行为低频)!如何缩小功能与用户忠诚的势能?健康管理便成了最贴合的填充物,即你每天运动量多少、睡眠质量如何(这些都是你每天需要关注的),我们把这种最贴合的填充物称之为“产品动力”,就像一辆汽车要想跑起来,得有油啊!
网易云音乐歌曲的精准匹配、情感Evoking的评论足以满足了用户的听歌的需求( Self-satisfaction),但是这种满意度是碎片的,不足以兑换用户的忠诚度,因此我们还需点针线活,将它串起来,于是灵活的歌单创建为用户的自主收藏创造一个良好的前提,从而下次能想到——“哎上次那个’口琴’很好听”,这就是用户的二次体验,即作为用户忠诚度的一个开始。
2.2结构层——细致的场景定位与用户行为定位
- 场景一:私人FM
由于私人FM属于没有尽头的歌单播放,用户与产品此时处于一种“托管模式”。即使用“私人FM”的用户属于重度盲听用户,因此在行为路径方面没有太多的横向、纵向延伸的必要性。
- 场景二:每日歌曲推荐
相比于私人FM无尽头播放,“每日歌曲推荐”的数量是有限的(20首),即使用“每日歌曲推荐”的用户属于中轻度盲听,用户只是暂时托管于产品,其还有继续探索的精力。因此在行为路径方面需要一定的横向、纵向延伸。
2.3框架层——强化盲听、音乐+评论
从Win7版到Win10,网易云音乐通过元素的整合与布局强化了盲听这一要素,顺应了范围层的需要。win10版的网易云音乐将左导航的“私人FM”与归属于推荐歌单“每日推荐”独立出来,至于视觉黄金附近,作为单独的模块入口,以突出“盲听”对产品的重要性。当然音乐+评论也是最具智慧的组合方式,通过优质评论去强化听歌体验,触发用户情感Evoking。
2.4表现层——产品的脸面,马虎不得
- 色彩
官方默认皮肤是暗红色,学过色彩心理学的同学一定不陌生,红色是最容易激发(Evoking)情感的,而在红色中又加入了灰色系,使得红色的饱和度被降低,即调和了情感激发的强度(过强容易引起人不适,甚至是反感),同时低饱和度的色系容易激发品质、高端等积极情绪。因此暗红色作为官方默认的主色系与目标用户人群(喜欢逼格的85-95)是十分契合的。
- 界面复杂度
去解构苹果系列的海报抑或视频,你会提取到形成逼格的一个核心要素就是“简洁”。从使用层面来讲,简洁事物的信息化指标质量很高(如较高的可读性)会驱动用户快速解码,为二者之间的共鸣提供了一定的前置基础。其次来自于用户价值层面的移情特质,水墨画中的留白会使人移情于山水之间,对于界面表现,也有类似的效果,比如增加“透气性”,使人更加聚焦于核心内容本身,一旦聚焦(Attention Span)就容易发生情感关系(详情请参考“关于无线C端产品的一些UX建议”)。
相比于Win7,Win10版在界面复杂度方面,主要优化了两点
- 注重界面的“透气性”,通过重新布局内容区块,实现主动留白;适当缩小歌单封面面积,实现被动留白。
- 注重界面元素一致性,相比于Win7版的纯文字内容区块Title,结合主色系(暗红色)的Icon增加了界面一致性的调和作用(注意Win7版的纯文字是灰色系,在色彩学上,灰色起到了调和的作用。Win10版在灰色文字调和的基础之上,又通过主色系的线稿式Icon对这种调和有做了一步梳理,使得界面表现出更高的一致性,即看上去不复杂的。)
- 界面精致的
一辆好车,你不用看牌子,直接看它的曲面加工工艺,你就能猜出这一定是一辆价值不菲的车。对应于界面也是,粗糙的界面会让用户感知到廉价、不靠谱,这就好比相亲,你给人家的第一印象就是“邋遢”、“吝啬”,基本上这次相亲已经Game Over了。
网易云音乐在界面精致性方面做的很细腻,除了前面提到的降低界面复杂度传递一种“逼格”,其在歌单封面的选择上,也多是一些富有“逼格”的图片。相信许多热爱音乐的人都有过收藏CD的习惯,通过精致的复古情怀的CD转盘来传递这种对音乐的尊重与品质的传递当属最合适不过了。
- 评论吸引力
要说网易云音乐给用户带来的最大情感震撼当属“评论”。一首普通的歌,经过切合情境的评论的催化,使其显得非常有韵味。这种现象,我们将其称为“心理层面”的有色眼睛。
网易云音乐的评论机制是以用户点赞的热门评论为主,前面已经提到过,评论对音乐而言是一种顺势而为,迎合音乐本身积极情感的一个收尾。基于点赞数的人们排序恰恰保证了评论的质量或吸引力(人在情感Evoking方面是具有共性的,一个搞笑的段子,无论你是男生抑或女生都会忍俊不禁)。Papi酱为什么那么火,其中有一个重要的要素就是其题材选的好,吐槽了我们想吐槽的东西。记得有位前辈曾经提到社交的本质,即表达-认同-沟通,基于点赞排序的机制利用人的情感Evoking共性,强化了内容的认同,为最终的情感共鸣(沟通)奠定了基石。
- 歌曲质量高的
前面已经提到有关网易云音乐的推荐算法,它其实本质上满足了用户个性化或者千人千面的诉求。传统的音乐呈现,无非是基于“新歌首发”、“排行”、“歌单”抑或什么爵士摇滚。我想说的是,你整那么多,干哈?和我有关系吗?在盲听的情境下(明听更多的牵扯到音乐的版权,这里不做讨论),用户的需求是听到好听的歌,至于你分的什么摇滚、爵士,这些和我的需求存在匹配关系吗?而网易云音乐将这种选择困难转移给系统,这无非是最善解人意、最有效、最省力的做法,正是因为这“三最”,才使得用户对网易云音乐产生黏性(以前做社交产品一直在思考如何提升产品的黏性,现在看来,黏性本质是以一种最智慧的方式使得用户承担更少的心智负荷,从而高效地实现用户内心最真实的需求)。
2.5战略层闭环–为什么用户忠诚度那么高
好了,说了那么多,最后我们以一张图来对以上内容做一个简单梳理,并验证网易云音乐用户高忠诚度的现象。范围层确定了产品差异化功能:评论、盲听以及灵活的歌单创建,之后结构层通过不同场景下的行为分析,确定用户的行为路径,进而驱动产品页面流,框架层对盲听入口做了强化,并且将音乐与评论结合在一起,在表现层,产品除了对范围层差异化功能进行细致展现之外(评论吸引力&歌曲质量),对产品的整体气质也进行了包装(色彩&界面复杂度&界面精致),最后回到战略层(本文旨在从用户体验角度对网易云音乐进行分析,因此不对产品的商业模式进行探讨,只聚焦于用户目标),这些努力、情怀是大家的情怀吗?很明显是大家的情怀。
- 目标用户多是85-95年龄段的用户,这部分用户对产品的“逼格”诉求自然不言而喻。但是目标用户对音乐本身的垂直度质量要求不高,多为中间品质用户,即好听剩余一切!而非一定要听爵士抑或一定要听摇滚!
- 用户的目标多为盲听,因此产品强化盲听,是最直接的产品与用户的匹配,自然要胜于那些所谓的新歌首发、排行等自嗨型的痒点规划。
- 之前看到有一个以年龄为自变量的情怀营销的实验,研究结果发现相比比于其他年龄群,针对90后左右的年龄群(85-95)做情怀营销是有效果的。因此网易云音乐的评论正好契合了这一条件。所以我们也不难发现,目标用户对网易云音乐的评价都很高(注意是目标用户,你硬让一个喜欢唱《月亮之上》的用户去感受产品的追忆的情怀,那是不切实际的)。
综上述之,网易云音乐的确实现了范围层、结构层、框架层以及表现层至战略层的闭环。
三、写在最后
最近陆续地看到一些同学的竞品分析,所以我想谈谈有关产品分析的看法。脱离用户真实感受去讨论什么架构、什么交互细节是空洞的,是不接地气的!这就回到第一原理思维的问题上,我们为什么要去分析一个产品,不是去套用某个模板,然后针对每一模块进行文字填充,而是源自于产品真实感受,然后去寻找这份感受的源头在哪(为什么会有这样的感受),把它挖掘出来进行剖析!就像前几天人人都是产品经理的一篇文章提到的:不要做温室里的产品经理,要成为一名野生的产品经理。即不要被动地去分(罗)析(列)产品,而要学会主动的分(挖)析(掘)用户真实感受的源头。这样的分析才有价值!
转载注明:云瑞设计文章来源:人人都是产品经理